Analyse du cycle de vie

L'analyse du cycle de vie (aussi appelée «écobilan» ou ACV) se base sur la notion de développement durable en fournissant un moyen efficace et systématique pour évaluer les impacts environnementaux d'un produit, d'un service ou d'un procédé.

Définitions :

  • Compilation et évaluation des entrants et des sortants, mais aussi des impacts potentiels sur l'environnement d'un système de produits au cours de son cycle de vie. (source : www2.ulg.ac)
  • Bilan détaillé des impacts d'un procédé, d'un produit ou d'une prestation sur l'environnement, «du berceau à la tombe». (source : socgen)
  • Outil permettant d'évaluer les impacts sur l'environnement de la fabrication ou du reconditionnement des palettes, depuis l'... (source : planetpal)

L'analyse du cycle de vie (aussi appelée «écobilan» ou ACV) se base sur la notion de développement durable en fournissant un moyen efficace et systématique pour évaluer les impacts environnementaux d'un produit, d'un service ou d'un procédé.

Le but essentiel, suivant la logique de pensée cycle de vie, est de diminuer la pression d'un produit sur les ressources et l'environnement tout au long de son cycle de vie, de l'extraction des matières premières jusqu'à son traitement en fin de vie (mise en décharge, incinération, recyclage, etc), cycle fréquemment qualifié de berceau au tombeau («cradle to grave» en anglais). Un effet secondaire est qu'en limitant les besoins en ressources et en énergie, la chaîne de valeur du produit peut s'en trouver améliorée.

Cette méthode, apparue dans les années 70, commence à entrer dans les méthodes couramment utilisées en gestion de l'environnement, surtout depuis sa normalisation avec la série des normes ISO 14040 (dans la série des normes ISO 14000 concernant la gestion de l'environnement).

L'analyse du cycle de vie est à la fois :

Malgré le nom de cette méthode, il est important de comprendre que l'analyse du cycle de vie s'occupe d'étudier la fonction du produit. En effet, en n'étudiant que le produit en lui-même, il deviendrait difficile de comparer des produits remplissant la même fonction mais de manière différente comme la voiture et le transport en commun dont la fonction commune est de déplacer des personnes.

Méthodologie

Relations entre les différentes étapes du processus d'analyse du cycle de vie selon ISO 14040
Relations entre les différentes étapes du processus d'analyse du cycle de vie selon ISO 14040

L'analyse du cycle de vie est un processus itératif formé de 4 étapes principales. Le processus est itératif car chaque étape peut amener à revoir les précédentes ; ainsi des difficultés dans l'obtention de données pour l'inventaire peuvent amener à revoir les objectifs et le champ d'étude.

La définition des objectifs et du champ de l'étude

Cette première partie se décompose en plusieurs sous-parties dont la structure est standardisée par la norme ISO 14041.

Définition de l'objectif de l'étude

C'est le premier pas de l'étude. Il vise à définir pour qui (public cible, gouvernement, département d'une entreprise, etc. ) et pourquoi l'étude est réalisée. Cet objectif doit refléter la raison qui pousse à cette analyse, par exemple, l'identification des principaux impacts d'un produit, l'amélioration d'un produit existant, le choix d'un produit comparé à un autre, le choix d'une politique gouvernementale en matière d'environnement, l'établissement d'une planification stratégique, le developpement de marketing, etc.

Dépendamment de ces objectifs, les choix réalisés au cours de l'étude pourront varier, de même qu'une partie du processus. Par exemple, une analyse du cycle de vie rendue public se doit d'être revue par des vérificateurs externes, ce qui n'est pas le cas pour une analyse utilisée à des fins internes.

La fonction

La fonction joue un rôle central car c'est en la définissant correctement qu'il est possible de comparer des produits entre eux. Une bonne définition de la fonction permet aussi de définir correctement les frontières du système à l'étude.

Exemple de fonction pouvant servir pour de la peinture : protéger et colorer un mur.

L'unité fonctionnelle

L'unité fonctionnelle représente une quantification de la fonction. C'est à partir de cette unité qu'il sera possible de comparer des scénarii a priori différents. Comme toute unité, elle se doit d'être précise, mesurable et additive.

Dans le cas de la fonction précédemment proposée, l'unité fonctionnelle peut être de couvrir 1m² de mur pendant 20 ans.

La fonction et l'unité fonctionnelle ainsi définies sont suffisamment ouvertes pour comparer des peintures entre elles, mais également du papier mural dont la fonction est la même.

Paramètres clés

Les paramètres environnementaux clés sont des paramètres qui, pour un produit donné, vont influencer la capacité à rencontrer l'unité fonctionnelle définie. Typiquement entrent en jeu des questions de durée de vie, de nombre d'utilisations possibles, d'efficacité, etc.

Pour une peinture, les paramètres clés peuvent être la durée de vie d'une couche de peinture et la quantité de peinture nécessaire pour couvrir adéquatement une surface.

Le flux de référence

Le flux de référence désigne la quantité du produit analysé et de consommables utilisés par ce produit nécessaires pour rencontrer les besoins de l'unité fonctionnelle.

Dans le cas de la protection d'un mur, le flux de référence pourrait être :

Les frontières du système

Une fois la fonction et ses attributs clairement définis, il convient de définir les limites du système qui sera étudié et qui permettra de rencontrer les besoins de la fonction.

Comme expliqué plus loin, le système à l'étude est le plus souvent décomposé en processus élémentaires (extraction des matières premières, transport, 1re transformation, etc. ) Selon la théorie, chaque processus élémentaire fournissant un intrant pour le produit final devrait être pris en compte. Cependant, pour un système un minimum complexe, cela amène d'innombrables processus élémentaires, certains ayant une contribution quasi-nulle.

Par conséquent, il est le plus souvent admis de définir des frontières pour le système au-delà desquelles la recherche d'information ne s'aventurera pas. Dans ce cas, il est nécessaire d'avoir des données suffisamment précises pour combler le manque. Ainsi, s'il n'est pas nécessaire de prendre en compte tous les processus élémentaires amenant à la production de l'électricité utilisée pour un procédé, il faut en revanche avoir accès à des données d'impact dites agrégées, qui vont lorsque même permettre de quantifier l'impact de la consommation d'électricité.

Un processus élémentaire dont les données préliminaires montrent que la contribution est infime peut être retiré selon des critères d'exclusion à définir.

Souvent, la définition des frontières sera itérative. En effet, tout d'abord, il sera possible de construire un arbre des processus élémentaires et de spécifier, a priori, les processus inclus et exclus. Durant les phases suivantes, il sera fréquemment nécessaire de revenir sur les frontières pour inclure ou exclure des processus, soit parce que des données précises ne sont pas disponibles, soit parce qu'un processus doit être inclus car présentant un impact qu'il faut qualifier plus exactement.

Les étapes générales à considérer sont :

Il est à noter qu'il existe deux types d'analyses du cycle de vie, dites «d'attribution» et «de conséquence». Ce dernier type a un effet sur la définition des frontières.

L'analyse de l'inventaire du cycle de vie

L'étape d'inventaire d'analyse du cycle de vie (ICV) consiste à inventorier tous les flux à l'intérieur ainsi qu'à l'extérieur du système à l'étude. Cette étape est normalisée et décrite par la norme ISO 14041.

Deux types de flux sont identifiés dans le cadre d'une analyse du cycle de vie :

L'inventaire et son analyse se fait en 4 étapes :

  1. Quantification de tous les flux économiques et élémentaires associés à chaque processus élémentaire : pour chaque étape du système, reconnu comme une boite noire, il faut quantifier tout ce qui entre et tout ce qui sort.
  2. Mise à l'échelle des flux économiques et élémentaires : il faut mettre à l'échelle tous les flux identifié selon le flux de référence. Ceci consiste à prendre le flux de référence (la quantité étudiée du produit final) ainsi qu'à remonter de processus élémentaire en processus élémentaire tous les flux élémentaires correspondants.
  3. Quantification des émissions et extractions pour chaque processus élémentaire : l'objectif de cette étape est de quantifier tous les éléments qui ont un impact environnemental à chaque étape
  4. Agrégation des flux élémentaires : toutes les données pour une source d'impact sont agrégés pour calculer les impacts à l'étape suivante. Par exemple, toutes les émissions de CO2 de tous les processus élémentaires sont additionnées en une seule valeur.

Evaluation des impacts du cycle de vie

L'évaluation des impacts du cycle de vie (ÉICV) est une étape importante de l'analyse du cycle de vie et vise à transformer un inventaire de flux en une série d'impacts clairement identifiables.

L'évaluation des impacts est standardisée par la norme ISO 14042 qui stipule que cette étape peut servir pour

Tout comme le reste de l'analyse du cycle de vie, l'évaluation des impacts est fondée sur une unité fonctionnelle.

L'évaluation des impacts du cycle de vie prend comme données d'entrée l'analyse de l'inventaire du cycle de vie, c'est-à-dire une liste de flux entrants (les matières premières, matières transformées, énergies) et sortants (les rejets, déchets, émissions, etc. ) agrégés sur la totalité du système de produit, à toutes ses étapes de vie.

Ces flux vont être agrégés dans des catégories d'impacts pour ensuite donner des indicateurs de catégorie. Ultimement, il est possible d'arriver à un score environnemental unique, bien que ceci implique une pondération entre les catégories d'impact.

Typologie des méthodes d'évaluation

Il existe plusieurs méthodes pour réaliser une telle évaluation, ces méthodes peuvent se séparer en deux catégories en fonction de leur positionnement sur le continuum de la chaîne des causes à effet.

Les méthodes orientées problèmes

La chaîne de cause à effet pour les problématiques environnementales est assez complexe. On peut le plus souvent distinguer des effets primaires, découlant directement des activités étudiées, comme l'émission de CFC, et les effets secondaire, qui sont en fait les conséquences comme la dépletion de l'ozone stratosphérique, résultant en une augmentation des rayons UV touchant le sol, ce qui cause des problèmes de cataracte et de cancer.

Les méthodes orientés problèmes vont s'attacher à catégoriser les impacts de premier ordre, par exemple l'émission des CFC. Ces méthodes sont aussi connues sont le nom de méthode "mid-point".

Les méthodes connues sont :

Les méthodes orientées dommages

Contrairement aux méthodes orientées problèmes, les méthodes orientées dommage vont s'attacher à regrouper les impacts en fonction des résultats, aussi loin que possible dans la chaîne de cause à effet. C'est pour cela que ces méthodes sont aussi qualifiée de "end-point".

Ces méthodes présentent l'avantage de montrer plus clairement l'impact. Ainsi au lieu de parler d'émissions de gaz de type SACO (comme les CFC), les catégories d'impact vont quantifier l'impact comme le dommage sur la santé humaine (cancers, cataractes, etc. ).

Cependant, suivre la chaîne de causes à effet est assez difficile, surtout dans le domaine biologique : les durées sont importantes et la chaîne de causalité pas forcément clairement établie.

Par conséquent, les méthodes orientées problèmes sont fréquemment préférées, il est systématiquement possible de dériver les dommages finaux à partir des effets de premier ordres ainsi obtenus.

Exemple de méthode orientées dommages :

Étapes d'évaluation des impacts

Choix des catégories d'impacts

Les catégories d'impact sont multiples. On peut en ressortir deux types qui jouent à deux niveaux.

Les catégories orientées dommages :

Les catégories orientées problèmes :

Plusieurs autres catégories existent, les principales différences étant que certaines regroupent ou non certains impacts sous une même bannière. Selon ISO 14042, les critères présidant au choix de bonnes catégories d'impacts sont que ces dernières ne soient pas redondantes et n'amènent pas de double comptages, qu'elles ne déguisent pas d'impacts importants, qu'elles soient complètes et qu'elles permettent la traçabilité.

Classification

Cette deuxième étape vise à classer chaque élément de l'inventaire de cycle de vie dans les catégories choisies.

Ceci n'est pas sans difficulté car certaines substances émises peuvent avoir des impacts multiples selon deux modes :

Il faut par conséquent s'assurer qu'il n'y a pas redondance des sources ou des impacts. Ainsi pour les impacts en parallèle, la même molécule n'aura pas les deux impacts simultanément. Il convient de séparer l'inventaire de la molécule en flux différents ayant des impacts qui leur sont propres. Pour les impacts en série, il faut s'assurer de ne prendre qu'un des impacts pour éviter les redondances.

Caractérisation
Exemple d'une caractérisation pour le cycle de vie du diesel
Exemple d'une caractérisation pour le cycle de vie du diesel

Cette étape vise à caractériser les entrants et les sortants en fonction de leur degré de contribution à un impact. Ceci amène à convertir tous les éléments participants à un impact en une mesure commune servant à ressortir un indicateur numérique.

Un exemple simple est la caractérisation des substances participant au réchauffement climatique. Il est le plus souvent admis que le CO2 est la substance de référence. Ainsi toutes les autres substances participant à cet impact vont être converties en équivalent CO2 en fonction de leur potentiel d'impact. Il est communément admis que le méthane a un potentiel d'impact 20 fois plus important que le CO2, par conséquent chaque gramme de méthane équivaudra à 20 grammes équivalent CO2.

Cette étape fait entrer des paramètres très différents et amène à faire des choix méthodologiques et des hypothèses pouvant faire varier le résultat.

Ainsi même pour l'impact "changement climatique", qui est néenmoins l'un des plus simples (comparativement à l'éco-toxicité par exemple), plusieurs critères rendent la caractérisation difficile.

Originellement, le positionnement sur la chaîne de cause à effet pour considérer l'équivalence des différentes substances n'est pas évident. Ainsi, caractérise-t-on le méthane (comparé au CO2) en fonction de sa contribution à la perturbation du bilan des radiations (forçage radiatif instantané, effet de premier ordre) ou à l'augmentation du niveau de la mer (effet de troisième ordre). Le premier est quantifiable, le second est moins certain. Ceci nécessite par conséquent de faire un choix méthodologique pouvant modifier le résultat.

L'échelle de temps reconnue pose aussi problème pour la caractérisation des substances ayant un impact sur les changements climatiques. Ainsi le méthane a une durée de vie 15 fois plus courte que le CO2 (10 ans contre 150 ans). Donc, dépendamment de l'horizon temporel choisi, la caractérisation du méthane va changer. Sur un horizon de 10 ans, il est le plus souvent reconnu avec un facteur de 62 comparé au CO2 alors qu'à très long terme, 500 ans, ce facteur est ramené à 7,5.

Ainsi, chaque élément participant à une catégorie d'impact doit être caractérisé, caractérisation qui peut varier en fonction de paramètre que le praticien est obligé de fixer selon des choix méthodologiques qui feront infailliblement varier le résultat.

Normalisation

Selon ISO, cette étape est optionnelle.

Cette étape consiste à obtenir une valeur normée afin de la rendre comparable à d'autres valeurs du même domaine. Ainsi il peut être intéressant de ramener certains impacts à une valeur par individu (diviser par le nombre d'habitants d'un pays) ou au contraire de projeter un résultat local/régional à l'échelle nationale ou mondiale.

Dans la norme EDIP, les valeurs vont être ramené à l'unité "équivalent personne" selon la nomenclature suivante :

mPEDK90

Avec cette mesure unique, il faut utiliser des valeurs de références globales pour les impacts globaux et des valeurs régionales pour les impacts régionaux. Ceci oblige à caractériser les impacts régionaux.

Groupement

Selon ISO, cette étape est optionnelle.

Le groupement vise à faire un tri et un classement par priorité des catégories d'impact. Ceci se fait assez rarement.

Pondération et agrégation
Exemple d'une pondération pour le cycle de vie du diesel
Exemple d'une pondération pour le cycle de vie du diesel

Selon ISO, cette étape est optionnelle.

Bien que cette étape soit celle qui amène le résultat le plus compréhensible pour le grand public car résultant en une valeur unique, elle est optionnelle car c'est aussi l'une des plus subjectives. Cette étape est même déconseillée dans certaines conditions.

L'objectif est de donner des valeurs de pondération à toutes les catégories afin de les agréger en un score unique. Si l'intérêt est évident pour le grand public (possibilité des comparer un score unique entre différents produits), il fait disparaître énormément d'informations et se fait par un choix de pondération qui demeure assez subjectif. En effet, il n'existe pas de méthode pour déterminer, par exemple, lequel des changements climatiques ou de l'éco-toxicité a le plus d'impact.

Il existe 5 grandes méthodes pour choisir les valeurs de pondération :

L'interprétation de l'analyse du cycle de vie

L'interprétation vise à retirer des conclusions sûres de l'analyse. Il faut par conséquent analyser les résultats, établir des conclusions et expliquer les limites de l'analyse réalisée.

Il faut aussi apporter des résultats transparents, conformes à la définition du champ d'études, complets et aisés à comprendre.

Dans le cadre d'une analyse du cycle de vie, le processus employé est aussi important que le résultat final, il faut par conséquent laisser ce processus ouvert et compréhensible pour laisser au lecteur la possibilité de juger de l'apport de l'analyse réalisée.

L'interprétation doit aussi mettre en avant les méthodes de vérification employées et doit clairement établir les limites de l'étude.

Outils d'analyse des résultats

Analyse de contribution

Calcul de la contribution d'un paramètre d'entrée comparé à un paramètre de sortie. Cette analyse peut se faire comparé à l'inventaire, à la caractérisation ou à l'indicateur unique s'il a été calculé. Il va ainsi être possible de ressortir des pourcentages de contribution, servant à s'assurer que les résultats sont cohérent et de ressortir les processus et les éléments qui contribuent le plus au cycle de vie.

Ceci va permettre d'évaluer quels intrants et quels processus sont les principales sources de l'impact environnemental. Il n'est pas rare que parmi des centaines de processus élémentaires, quelques uns uniquement représentent plus de 80% des impacts, se rapprochant ainsi de la loi de Pareto. Ressortir ces processus apporte des indication précieuses sur les éléments à perfectionner dans le système étudié.

Analyse de dominance

Calcul utilisant des outils statistiques ou de ranking servant à ressortir les contributions significatives ou remarquables (consiste le plus souvent à faire des catégories de contribution allant de forte à faible et de classer chaque étape du processus dans ces catégories. )

Analyse d'influence

Analyse visant à voir la possibilité d'influencer un aspect environnemental et son impact sur l'analyse complète.

Outil de vérification

L'objectif est d'assurer le complétude, la cohérence et la stabilité des résultats. Pour cela, plusieurs étapes sont à réaliser :

Étude des sources d'incertitudes

Il faut regarder la variabilité des paramètres en fonction de l'espace, du temps, des relations entre sources et objets. La précision des données, le fait d'avoir des données manquantes doit aussi être étudié de près tout comme le modèle utilisé et les simplifications qui sont faites.

Enfin, il faut aussi évaluer l'incertitude liée aux choix et hypothèses réalisées tout au long du processus mais aussi les incertitudes propres aux prises de données ainsi qu'à la limite des connaissances sur les sujets traités.

Contrôle de complétude

Rares sont les ACV pouvant obtenir toutes les données nécessaires. Souvent des approximations sont nécessaires. Il faut dans ce cas justifier les choix faits et vérifier l'impact de ces choix si les données sont importantes et justifier en quoi ces données ne sont pas importantes si elles sont jugées comme tel.

Contrôle de sensibilité

L'objectif est de valider la fiabilité des résultats finaux en déterminant l'influence sur ceux-ci de variation dans les hypothèses, les données sources et la méthodologie.

Le contrôle de sensibilité peut s'appliquer à n'importe quel élément de l'analyse : imputation, critère d'exclusion, frontière du système, catégories d'impact choisies, données de normalisation, etc.

Deux types d'analyse de sensibilité sont possibles :

Dans ce cas, il est possible d'étudier l'impact d'une variation de x% d'un flux élémentaire sur l'inventaire, d'un facteur de pondération sur le score final, etc. À partir de là, il est possible d'extrapoler des facteurs de dépendance (ou de corrélation). Les intrants ayant un fort pouvoir de corrélation sur l'output doivent dans ce cas être regardés de près pour assurer que ces valeurs, dont l'impact est majeur, sont aussi précises que possibles.

Cette analyse peut amener à revoir le champ d'étude et les objectifs en fonction de la sensibilité de certaines données.

Contrôle de cohérence

L'objectif de ce contrôle est de s'assurer que les résultats obtenus sont conformes au champ de l'étude originellement formulé. Dans le cas de comparaison entre différents scénarios, il est aussi conseillé de démontrer que les hypothèses choisies dans chacun des scénarios sont cohérentes les unes comparé aux autres.

Ces différences entre les scénarios peuvent venir de différences dans les sources des données, dans la précision des données, dans les représentations technologiques. Les différences liés au facteur temps, au facteur géographique, à l'âge des données, ainsi qu'aux indicateurs doivent être aussi pris en compte.

Évaluation de la qualité des données

Normalement, dès les premières étapes de l'inventaire, les praticiens doivent établir des recommandations concernant la qualité des données, surtout les couvertures temporelles et géographiques, la précision, la représentativité, la cohérence et la reproductibilité des mesures, les sources des données et les niveaux d'incertitude.

Durant la phase de vérification, les données utilisées doivent être comparées aux recommandations initiales. Les écarts doivent être documentés et justifiés.

Analyse d'incertitude

Vise à vérifier l'impact de l'incertitude des données principales sur les résultats du modèle. Ceci se fait habituellement avec des outils informatiques en utilisant par exemple une Méthode de Monte-Carlo. Certains des outils d'analyse du cycle de vie permettent d'entrer l'incertitude d'une valeur avec une distribution. Le programme va dans ce cas ressortir une distribution de résultat qui permettra soit de s'assurer que la variabilité n'a pas d'impact trop important, soit que le résultat d'un comparatif entre plusieurs scénarii est valide dans les conditions d'incertitude.

Standardisation de l'analyse de cycle de vie (ACV)

La série de la norme ISO 14040 apporte de la documentation pour chacune des étapes de l'ACV :

Imputation et exclusion

Souvent l'enchevêtrement des processus rend les sources et les destinations des flux difficiles à déterminer. C'est surtout le cas pour les processus multi-fonctionnels dans lesquels un seul processus va générer plusieurs produits. C'est par exemple le cas du raffinage du pétrole qui va produire différents carburants (diesel, essence, gaz naturel), d'autres co-produits comme l'asphalte.

À supposer l'étude d'un seul de ces co-produits, par exemple l'asphalte, comment répartir l'impact des étapes précédentes (extraction du pétrole, raffinage, transport, etc. ) entre le produit étudié et les autres co-produits.

Plusieurs approches sont possibles et sont ici présentées par ordre de priorité selon ISO :

Approche de division

C'est la solution la plus simple, mais rarement applicable au complet. Elle consiste à séparer les processus multi-fonctionnels en processus mono-fonctionnels ainsi qu'à exclure les processus qui n'entrent pas directement dans la chaîne du produit étudié.

Approche par extension des frontières

Cette méthode est assez efficace lors qu'un processus abouti sur un co-produit qui peut être réalisé par un processus mono-fonctionnel. Dans ce cas, il est possible d'étendre les frontières du système à ce processus mono-fonctionnel et ensuite de soustraire les impacts de ce dernier au processus multi-fonctionnel.

Cependant ceci oblige à réaliser une analyse plus complexe prenant en compte un processus supplémentaire.

Approche par imputation

L'imputation est la méthode ultime pour résoudre des problèmes de processus multi-fonctionnels mais fréquemment entrent en jeu des choix méthodologiques qui ne vont pas refléter pleinement la réalité. C'est le cas pour le raffinage du pétrole.

L'imputation consiste à répartir les entrants et les sortants de façon à refléter le degré de responsabilité de chaque co-produit dans la génération de ces flux.

Pour ceci, il faut faire un choix sur la contribution de chaque produit en fonction d'une mesure. La méthode la plus simple est fréquemment celle de la masse. On attribuera à chaque sous-produit une portion des entrants et sortant en fonction de la masse produit de sous-produit comparé à la masse totale de produits issus du processus. Il devient ainsi possible de ne prendre en compte dans l'analyse réalisée qu'une portion des entrants et sortants du processus.

Les critères utilisés pour l'imputation dépendra de la valeur, et quelque part de la raison, qui pousse à réaliser un processus. Ainsi pour un procédé de raffinage produisant plusieurs sources d'énergie différentes, le critère d'imputation pourra être la valeur énergétique de chacun des co-produits. Il est aussi envisageable de prendre la valeur monétaire comme facteur d'imputation.

La question de l'imputation, qui est quasi-inévitable dans une ACV, est une des critiques récurrentes de cette méthode car elle peut amener à une variation importante dans la contribution d'un processus en fonction de la méthode et du critère choisi.

Le cas du recyclage

Le processus du recyclage est un exemple typique de processus multi-fonctionnel dont les impacts vont devoir être répartis ; au point que les normes ISO ont édité une série de recommandations à ce sujet.

Recyclage en boucle fermée

Le recyclage en boucle fermée est un processus qui permet de récupérer un nombre de fois virtuellement illimité un matériau, sans en altérer sa qualité. C'est le cas de certains métaux mais aussi de catalyseurs pour des réactions chimiques.

Ce cas est assez simple, il suffit de considérer qu'un pourcentage donné de matière est recyclée et réinjectée dans le processus étudié. Il faut ensuite ajouter le processus de recyclage dans l'analyse du cycle de vie et ôter la quantité de matière recyclée du flux de matière entrant dans le processus.

Au global, il n'est pas nécessaire de faire entrer en jeu des imputations, tout reste dans les frontières du système.

Recyclage en boucle ouverte

Dans le cas du recyclage en boucle ouverte, dans lequel le produit recyclé va théoriquement être dégradé et servir à autre chose, il faut être en mesure de répartir les impacts du recyclage entre les différents processus en jeu. Ainsi lorsque on recycle des bouteilles en plastique pour en faire des bacs à poubelle, comment répartir le processus de recyclage entre le processus des bouteilles sachant que

ISO propose plusieurs voies :

On se retrouve ainsi dans le cas simple du recyclage en boucle fermée

Avantages et inconvénients

L'analyse du cycle de vie permet avant d'avoir une vision globale de l'impact environnemental d'une filière, de prévoir le déplacement de pollution, d'évaluer quel type d'impact environnemental est dominant dans la réalisation d'un produit et quelles étapes (étape de production, utilisation, mise au rebut) ou quels éléments spécifiques du produit contribuent le plus en terme d'impacts environnementaux. Ceci est obtenu par une démarche aussi exhaustive que possible et selon une démarche clairement documentée. Cette méthode permet aussi une mise en perspective des différents types d'impacts plutôt que de se limiter à un type d'impact spécifique.

C'est aussi un outil très utile pour faire des choix tout autant à portée globale (choix d'une politique environnementale, comme l'intérêt du recyclage de certains produits) que locale (choix de design et de production pour un produit).

Toutefois nombre d'obstacles font que l'analyse du cycle de vie ne sera jamais un outil universel. Originellement il est quasi-impossible d'obtenir l'intégralité des flux utilisés pour un produit, il faut par conséquent se contenter de données quelquefois limitées et faire appel à des données génériques, par conséquent manquant de précision.

Se pose aussi le problème de la représentativité géographique, les impacts étant différents d'une région à une autre. Par conséquent, fréquemment une ACV n'est pas transportable. Sachant qu'une ACV est un processus long et fastidieux, ceci nécessiterait de multiplier les analyses ce qui est difficilement réalisable.

Par ailleurs, plusieurs choix méthodologiques demeurent assez subjectifs comme les choix d'imputation et les méthodes de caractérisation des impacts, de normalisation et de pondération s'ils sont utilisés. Il n'est pas rare, dans le cadre d'une comparaison, de voir le classement entre plusieurs produits être inversé selon la méthode d'évaluation choisie et ce, juste au niveau de la caractérisation.

En conclusion, l'analyse du cycle de vie présente de nombreux intérêts. Cependant les résultats à eux seuls peuvent systématiquement être contestables selon les choix méthodologiques réalisés. Par conséquent les valeurs obtenues peuvent difficilement être utilisées par le grand public et nécessitent d'être étudiées en détail.

Deux types d'ACV

Il existe deux types d'analyse :

Dans les faits, la méthode est la même, l'unique différence se fait au niveau des frontières du système étudié.

Les flux et la méthode mathématique de l'ACV

Ecosphère, technosphère et définition des flux

Selon la logique de l'ACV, les flux constitutifs d'un produit se décomposent selon deux dimensions, deux sphères :

Afin de réaliser une ACV, tout système est décomposé en processus élémentaires et chaque processus élémentaire reçoit et émet des flux. À l'image des deux sphères (eco et techno), il existe deux types de flux :

Idéalement, seuls des flux élémentaires devraient entrer et sortir du système, les flux économiques ne devraient que servir à joindre les processus élémentaires entre eux (hormis le produit final qui est un flux économique qui sort du système). Toutefois ceci nécessiterait de prendre en compte trop de sous-systèmes comme par exemple tout ce qui sert à produire l'électricité nécessaire à un processus élémentaire. Par conséquent, il est fréquent que des processus élémentaires, comme l'approvisionnement d'électricité, soient simplifiés comme des processus économiques dont on connaît les impacts environnementaux agrégés (on ne connait pas les impacts de chaque processus élémentaire de la production d'électricité, mais les impacts globaux).

Résolution mathématique

L'analyse du cycle de vie fait un usage important du calcul matriciel pour passer de l'inventaire des flux à l'agrégation des impacts en passant par plusieurs étapes intermédiaires. Ces calculs sont le plus souvent réalisés avec logiciels de simulation, mais il demeure utile de connaître les différentes étapes en jeu.

De l'inventaire brut à l'inventaire mis à l'échelle et agrégé

Durant cette première étape, les matrices entrant en jeu sont formées des flux suivants :

Chaque processus élémentaire est représenté comme un vecteur dans une base des flux économiques et un base des flux élémentaires ce qui donne les matrice suivantes :

Ceci permet d'arriver à des valeurs mises à l'échelle du flux de référence

fi : somme des flux économiques i mis à l'échelle / f matrice des flux économiques mis à l'échelle, correspond à la demande finale.

gi : sommes des flux élémentaires i mis à l'échelle / g matrice des flux élémentaires mis à l'échelle.

A. s = f

Généralement, on connait la demande finale f mais aussi les flux économiques, il est par conséquent possible d'obtenir le facteur de mise à l'échelle.

s = A-1. f

Ensuite, il est possible d'obtenir la matrice des flux élémentaires :

B. s = g

Ceci permet d'obtenir tous les flux élémentaires et économiques mis à l'échelle et agrégés.

Du vecteur d'inventaire au vecteur d'indicateurs d'impact

Comme expliqué dans l'évaluation des impacts du cycle de vie, l'objectif consiste à ramener les inventaires en catégories d'impact clairement établies. Il est ensuite possible de ramener tous les flux d'inventaires participant à une catégorie d'impact à une valeur d'équivalence comparé à une unité de référence. Par exemple, pour la catégorie d'impact réchauffement climatique, tout sera ramené en kg CO2équivalent.

Pour ce faire, il faut établir une matrice de caractérisation Q qui va faire le lien entre le vecteur d'inventaire et le vecteur des indicateurs d'impact h qui s'obtient ainsi :

h = Q. g avec g comme vecteur d'inventaire

Vers un vecteur d'impact normalisé

Il est ensuite possible d'établir une matrice de normalisation. Cette dernière est une matrice diagonale dont les valeurs sont 1/ĥi pour chaque i catégorie d'impact. Il est ainsi possible d'obtenir le vecteur d'indicateur d'impact normalisé ∼h

Ceci permet le plus souvent de passer des valeurs en "unités équivalente" à des valeurs sans unités ou en points, plus aisément semblables entre elles et avec d'autres ACV.

L'indicateur unique

Enfin il est possible d'établir un vecteur de pondération w entre les différentes catégories étudiées. Sachant que les valeurs ont été normalisées jusque là et s'expriment par conséquent sans unité, il est possible de les sommer. On obtient ainsi

W = w. ∼h

Outils d'ACV

Quelques logiciels servant à faire des ACV :

Ces logiciels permettent en général de réaliser des modèles de cycle de vie en plus de contenir des bases de données importantes de flux de références et d'intégrer des méthodes d'évaluation des impacts. Ceci permet de calculer les impacts potentiel à partir des modèles réalisés.

Exemple de résultats

Voici quelques chiffres comparés des impacts entre les infrastructures et les procédés (selon Éco-indicator 99, score unique (en pt. hiérarchisé)

Impact infrastructures Impact procédé utilisation
Fonte 7% 93%
Papier journal 13% 87%
Contre-plaqué 3% 97%
Patate bio 96% 4%
Électricité éolienne 99% 1%
Hydrau-électricité 92% 8%
Électricité charbon 5% 95%
Nucléaire 32% 68%
Énergie diesel 4% 96%
Énergie gaz naturel 1% 99%
Camion 33% 67%
Voiture 24% 76%
Incinération 3% 97%
Recyclage 19% 81%
Enfouissement 96% 4%

Les labels

Il existe plusieurs labels ou éco-étiquettes.

En Europe :

Dans le reste du monde :

Voir aussi

Cycle de vie

Normalisation

Liens externes

Notes et références


Recherche sur Google Images :



"La caractérisation est un processus ..."

L'image ci-contre est extraite du site www.vd.ch

Il est possible que cette image soit réduite par rapport à l'originale. Elle est peut-être protégée par des droits d'auteur.

Voir l'image en taille réelle (333 x 288 - 5 ko - )

Refaire la recherche sur Google Images

Recherche sur Amazone (livres) :

Chercher sur Amazone Refaire la recherche


Ce texte est issu de l'encyclopédie Wikipedia. Vous pouvez consulter sa version originale dans cette encyclopédie à l'adresse http://fr.wikipedia.org/wiki/Analyse_du_cycle_de_vie.
Voir la liste des contributeurs.
La version présentée ici à été extraite depuis cette source le 13/11/2008.
Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
Cette page fait partie du projet Wikibis.
Accueil Recherche Aller au contenuDébut page
ContactContact ImprimerImprimer liens d'évitement et raccourcis clavierAccessibilité
Aller au menu